
Available online at www.sciencedirect.com
www.elsevier.com/locate/jmbbm

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 4 8 ( 2 0 1 5 ) 2 8 – 3 7
http://dx.doi.org/10.
1751-6161/& 2015 El

nCorrespondence
E-mail address:
Research Paper
The biaxial active mechanical properties
of the porcine primary renal artery
Boran Zhoua, Alexander Rachevb, Tarek Shazlya,c,n

aCollege of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia,
SC 29208, USA
bInstitute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
cCollege of Engineering and Computing, Mechanical Engineering Department, University of South Carolina, Columbia,
SC 29208, USA
a r t i c l e i n f o

Article history:

Received 15 January 2015

Received in revised form

26 March 2015

Accepted 1 April 2015

Available online 11 April 2015

Keywords:

Vascular mechanics

Active stress

Porcine renal artery

Biaxial active response

Constitutive model
1016/j.jmbbm.2015.04.004
sevier Ltd. All rights rese

to: 300 Main St., RM A21
shazly@mailbox.sc.edu (
a b s t r a c t

The mechanical response of arteries under physiological loads can be delineated into

passive and active components. The passive response is governed by the load-bearing

constituents within the arterial wall, elastin, collagen, and water, while the active response

is a result of vascular smooth muscle cell (SMC) contraction. In muscular blood vessels,

such as the primary renal artery, high SMC wall content suggests an elevated importance

of the active response in determining overall vessel behavior. This study is a continuation

of our previous investigation, in which a four-fiber constitutive model of the passive

response of the primary porcine renal artery was identified. Here we focus on the active

response of this vessel, specifically in the case of maximal SMC contraction, and develop a

constitutive model of the active stress–stretch relations. The results of this study

demonstrate the existence of biaxial active stress in the vessel wall, and suggest the

active mechanical response is a critical component of renal arterial performance.

& 2015 Elsevier Ltd. All rights reserved.
Introduction

Arteries under physiological loads exhibit a complex mechanical
response that is governed by the geometrical dimensions of the
vessel and mechanical properties of arterial tissue. The major
load-bearing constituents of the arterial wall, elastin, collagen and
water, determine the so called passive mechanical properties of
vascular tissue. These constituents ensure integrity of the arterial
wall and performance of arterial physiological function as a blood
conduit and elastic buffer that reduces the cardiac preload. The
smooth muscle cells (SMCs) in the arterial wall have an insignif-
icant effect on the passive properties, but when appropriately
rved.

9, Columbia, SC 29208, U
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activated by mechanical, electrical, or chemical stimuli, they can

contract or relax and in turn constrict or dilate the vessel. This

phenomenon is termed the active mechanical response. Under

normal physiological conditions the SMCs are partially contracted

and the vessel manifests basal muscular tone. In concert with the

residual strains, muscular tone synergistically contributes to

homogenization of the strain and stress distribution across the

arterial wall and thus promotes a preferable local mechanical

environment for vascular cells (Rachev and Hayashi 1999;

Matsumoto et al., 1996). Moreover, the active response occurs as

an acute primary mechanism directed to cope with short term
SA.

boran zhou
高亮

boran zhou
高亮

http://dx.doi.org/10.1016/j.jmbbm.2015.04.004
http://dx.doi.org/10.1016/j.jmbbm.2015.04.004
http://dx.doi.org/10.1016/j.jmbbm.2015.04.004
http://dx.doi.org/10.1016/j.jmbbm.2015.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmbbm.2015.04.004&domain=pdf
mailto:shazly@mailbox.sc.edu
http://dx.doi.org/10.1016/j.jmbbm.2015.04.004


j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 4 8 ( 2 0 1 5 ) 2 8 – 3 7 29
changes in flow rate and/or arterial pressure (Brownlee and
Langille, 1991; Bayliss, 1902).

The passive and active mechanical response of arteries can
be described in several manners. At the overall arterial level, the
response is illustrated by pressure–diameter and axial force-
axial stretch relationships via data points in the corresponding
2-D planes (Cox, 1975, 1978; Dobrin, 1978). Often as comple-
mentary descriptors, several linearized measures in the vicinity
of a particular deformed state are calculated based entirely on
experimental data, such as compliance and pressure–diameter
modulus (called also Peterson’s modulus) (Peterson et al., 1960).
After appropriate data processing, the mechanical response can
be described via stress–strain (or stretch) relationships, which
characterize the properties of the arterial tissue. Stresses and
strains are calculated after adoption of certain assumptions for
the deformation process.

One of the basic tasks of vascular biomechanics is the quan-
tification of the mechanical properties of arteries in terms of
continuummechanics-based constitutive equations. Completion
of this task enables the formulation and solution of boundary
value problems that provide predictive results for the mechan-
ical response of arteries and for calculation of the stress and
strain distribution across the arterial wall. The stress and strain
fields determine the local mechanical environment of the
vascular cells, the mechanobiological response of which governs
arterial homeostasis. Constitutive equations also provide a
theoretical framework for design of experimental investigations
and processing data from mechanical tests. While the passive
mechanical properties of arteries have been thoroughly investi-
gated (Vito and Dixon, 2003; Holzapfel and Ogden, 2010), there
are less published studies on mathematical modeling of the
active response.

To our knowledge the first continuum-based constitutive
model that accounts for the effects of SMCs was proposed in
(Rachev and Hayashi, 1999). The model is based on the assump-
tion that when appropriately stimulated, the SMCs produce an
active circumferential stress that is additive to the passive stress
borne by the extracellular structural constituents. A justification
for the stress orientation is the experimental observation that
SMCs are aligned mainly in the circumferential direction (Cox,
1978). The magnitude of the active stress is considered depen-
dent on the intensity of stimulation and on the deformed
configuration of the artery (Dobrin, 1973, 1983). The model was
adopted in subsequent studies that examine the active response
of different arterial types, such as basilar artery (Cardamone
et al., 2009; Karšaj and Humphrey, 2012; Valentin et al., 2009;
Valentin and Humphrey, 2009), and iliac artery (Humphrey and
Wilson, 2003). Based on the observation that some SMCs might
be oriented not solely in the circumferential direction (Kockx
et al., 1993; Dartsch and Hämmerle, 1986), several studies
generalized the model by adding an active axial stress (Wagner
and Humphrey, 2011; Chen et al., 2013; Agianniotis et al., 2012).
The state of knowledge on the active arterial response was
summarized recently in a comprehensive review on vascular
tissue mechanical models (Kim and Wagenseil, 2014).

Surprisingly there is a lack of constitutive modeling of the
active arterial properties of renal arteries. They belong to the
class of muscular arteries in which a large portion of the media
is occupied by vascular SMCs and the active response is a typical
manifestation of arterial performance. An impaired mechanical
response, including the active component, is associated with
vascular diseases, such as stenosis, hypertension, aneurysm
and occlusion, and has increasingly gained recognition as a
potential risk factor for kidney failure or cardiovascular morbid-
ity and mortality.

Constitutive equations are quantified from data acquired in
appropriate mechanical tests. Briefly, the commonly accepted
ex-vivo testing methodology includes the inflation of a tubular
specimen performed quasi-statically at fixed levels of axial
stretch. First the inflation-extension experiment is run while
the SMCs are kept alive and are stimulated to contract. After-
wards, the contractile capability of the muscle is abolished and
the mechanical test is repeated. The generated data are pro-
cessed in the reverse order. First, considering the arterial tissue
as an elastic incompressible solid, the passive mechanical
properties are determined in terms of a strain energy density
function. Next, an analytical form and associated material
constants are identified to model the active arterial response.
A different approach was recently proposed for constitutive
formulation of the axial active stress in mouse aorta
(Agianniotis et al., 2012). It allows quantification of the active
stress independently of the constitutive modeling of the passive
mechanical properties.

This study is a continuation of our previous investigation on
the passive mechanical properties of the porcine primary renal
artery, which was analyzed in the framework of a four-fiber
constitutive model (Zhou et al., 2014). We focus on the descrip-
tion of the active response in the case of maximally contracted
SMCs and on the phenomenological constitutive formulation of
the active properties by adopting, with some modification, the
approach proposed in (Agianniotis et al., 2012).
Methods

Mechanical testing

All tissue handling protocols were approved by the Institu-
tional Animal Care and Use Committee at the University of
South Carolina. The right primary renal arteries were dis-
sected from freshly harvested adult (7–12 month old) porcine
kidneys obtained at a local slaughterhouse (Caughman’s
Meat Plant Inc., Lexington, SC). Prior to arterial excision from
the intact aorta and kidney, two dots of tissue marking dye
were applied close to the proximal and distal ends of the
vessel and the distance lin situ between the dots was mea-
sured using a digital caliper. The artery was then fully
isolated from the surrounding organs and cleared of con-
nective tissue, and the distance Lbt between the dots was
recorded. The in-situ axial stretch ratio with preserved basal
muscular tone was calculated as λbtin situ ¼ lin situ=L

bt . The arter-
ial sample was then gently rinsed and stored in phosphate
buffer saline for transportation to the laboratory. Immedi-
ately upon arrival, the sample was cannulated and mounted
within a chambered mechanical testing system (Bose BioDy-
namic 5270, Eden Prairie, MN) configured for inflation-
extension testing.

To initiate mechanical testing, the sample was submerged
in and perfused with continuously aerated hyperoxic (95%
O2þ5%CO2) Krebs–Henseleit solution at 37 1C and pH of 7.4
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(Agianniotis et al., 2012; Huo et al., 2012). A state of maximal
SMC contraction was induced by bringing the circulating
medium to a 10�5 M epinephrine concentration and allowing
a 15 min acclimation period to elapse. Both the concentration
of epinephrine and the duration of the acclimation period
were deemed sufficient for maximal SMC contraction in pilot
studies, in which additional stimulant (up to 10�4 M epi-
nephrine) or acclimation time (up to 45 min) induced no
further modulation of the pressure–outer diameter response
of the vessel. The stimulated arterial sample was then mech-
anically preconditioned at a fixed axial extension correspond-
ing to lin situ with 5 inflation-deflation cycles (pressure range
of 20–200 mmHg, pressure change rate of 1.5 mmHg/s).
Immediately following preconditioning, the sample was
retained at lin situ and subjected to three consecutive quasi-
static inflation-deflation cycles (20–200 mmHg, 20 mmHg
steps). The same test procedure was then repeated at fixed
axial extensions corresponding to 0.9 lin situ and 1.1 lin situ. At
each experimental state defined by the imposed pressure (P)
and axial extension (l), the vessel deformed outer diameter
(do) and axial force (f) were recorded via integrated system
components and software (Wintest 4.1, Bose ElectroForce,
Eden Prairie, MN and Labview 2010, National Instruments
Corporation, Austin, TX).

The passive mechanical response of the sample was next
assessed under a fully relaxed SMC state, which was induced by
flushing the circulating medium, replacing it with a 10�5 M
sodium nitroprusside solution, and allowing 15min for accli-
mation. Here again, pilot studies were performed to determine
the concentration of sodium nitroprusside (up to 10�4 M) and
acclimation period (up to 45min) required for induction of
complete SMC relaxation. Complete SMC relaxation was verified
in additional pilot studies via comparison of the passive vessel
response before and after treatment with cytochalasin D (Fonck
et al., 2007). Coincident pressure–diameter curves were also
observed in these studies, indicating that sodium nitroprusside
completely abolished SMC contractility and mitigated the
potential for a myogenic response to confound passive experi-
mental measurements. Mechanical preconditioning and pas-
sive inflation-extension testing were performed following the
methodology described above. A total of five right primary renal
arteries (N¼5) were acquired from five animals and mechani-
cally tested following the described methodology.

Upon completion of active followed by passive mechanical
testing, the sample was removed from the chamber and the
distance L between dots was measured. The actual in-situ
axial stretch ratio was calculated as λin situ ¼ lin situ=L, whereby
the reference length now corresponds to a state of no load
and complete SMC relaxation. Accordingly, the axial stretch
ratios λz applied in mechanical testing were calculated
asλz ¼ l=L. Five ring segments (1 mm width) were then cut
from the central part of the fully relaxed arterial sample. A
radial cut was applied to each ring, which was then placed in
small volume of Krebs–Henseleit solution and given 30 min to
mechanically equilibrate. The resultant geometry was close
to a circular sector and was considered as the stress-free
configuration of the arterial wall. The inner (Li) and outer (Lo)
arc lengths as well as thicknesses (H) of each sector were
measured via analytical microscopy and used to calculate
cross-sectional area (A) as follows:
A¼ H Lo þ Lið Þ
2

ð1Þ

Making use of the incompressibility of the arterial tissue,
the deformed inner radius (ri) at each experimental state is
calculated as

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2o
4

� A
πλz

s
ð2Þ

By definition the pressure–diameter modulus Ep and com-
pliance C are calculated as (Peterson et al., 1960)

Ep ¼
ΔP ri
Δri

C¼ Δri
ΔP ri

ð3Þ

where Δri is the small increase in deformed inner radius
caused by the small increase in pressure ΔP at the deformed
configuration under given P and λz.

Theoretical framework

The arterial tissue is assumed to be an orthotropic incom-
pressible elastic material, with axes of orthotropy in the
radial rð Þ, circumferential θð Þ, and axial zð Þ direction. The total
Cauchy stress in the arterial wall is assumed as a sum of a
passive stress with components σpi ; i¼ r; θ; z and an active
stress that has components σaθ and σaz in the circumferential
and axial direction. The passive stress is derived from the
strain energy density function (SEF) which is a function of the
principal Green strains Ei ¼ ð1=2Þ λ2i �1

� �
; i¼ r; θ; z, where λi are

the corresponding principal stretches. Because of the condi-
tion of material incompressibility, the components of the
Green strain tensor are not independent but satisfy the
condition 2Er þ 1ð Þ 2Eθ þ 1ð Þ 2Ez þ 1ð Þ ¼ 1. Using this equation
Er can be eliminated as an argument the SEF, i.e. W¼
W Eθ ;Ezð Þ. Following the approach for derivation of the
passive constitutive relations given in (Rachev 2003; Hum-
phrey, 2002), and in agreement with the introduced assump-
tion for summation of the passive and active stress, the
constitutive relations of the arterial tissue when the SMCs are
stimulated to contract are

σcθ ¼ σr þ λθ
∂W
∂λθ

þ σaθ ; σcz ¼ σr þ λz
∂W
∂λz

þ σaz ; ð4Þ

where superscript c indicates the total stress under the
contracted state. Because of material incompressibility the
radial stress σr is unknown and has to be determined from
the equations of equilibrium and boundary conditions.

Due to existence of residual strains in the unloaded ring
tubular segment and the synergistic effects of the active
stress, the stress and strain distributions across the arterial
wall are close to uniform (Rachev and Hayashi, 1999). There-
fore the mean values satisfactorily describe the stress and
strain state. Hereafter the stresses and strains represent the
mean values.

Consider two deformed states: one when the artery is relaxed
(passive response), and another when the smooth muscle is
stimulated to produce the so called isometric contraction. In the
latter case the artery experiences the same circumferential
stretch (and exhibits the same deformed inner and outer
diameter) and the same axial stretch as in the passive response,
but is inflated by different pressure. Though the contribution of
the second term in the right hand side of Eq. (4) is the same in
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Table 1 – Geometrical parameters of the zero stress configuration for each arterial sample, as well as the in-situ axial
stretch ratio with preserved basal tone (λbtin-situ) and in the fully relaxed smooth muscle cell state (λin-situ).

Sample Outer arc-length(Lo) [mm] Inner arc-length (Li) [mm] Thickness (H) [mm] λz,
bt
in-situ λz, in-situ

1 15.53 11.44 0.98 1.29 1.23
2 11.33 7.68 1.17 1.27 1.20
3 14.64 11.04 1.09 1.37 1.30
4 19.60 12.49 1.36 1.56 1.46
5 14.72 10.49 1.07 1.39 1.32
Average 15.17 10.63 1.13 1.38 1.30
SD 2.96 1.80 0.14 0.11 0.10
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both deformed states, the stress states are different. The artery
experiences different mean circumferential and axial stresses
due to existence of active stresses (in the case of isometric
contraction) and due to different mean radial stresses. The
active axial stress can be calculated by subtracting the stress
in the arterial wall when the SMCs are maximally relaxed from
the total stress when the SMCs evoke isometric contraction,
therefore

σaθ ¼ σicθ �σpθ þ σpr �σicr σaz ¼ σicz �σpθ þ σpr �σicr ð5Þ

where the superscript ic signifies the isometric contracted state.
The mean values of wall stresses can be calculated directly

from the experimental data as follows (Humphrey, 2002)

σr ¼ �P
ri

ri þ ro
σθ ¼ P

ri
ro�ri

σz ¼
f

π r2o�r2i
� � ð6Þ

where ro is the deformed outer radius. Then Eq. (5) yield

σaθ ¼
2riro
r2o�r2i

Pic�Pp
� �

σaz ¼
f ic� f p

A
þ ri

ri þ ro
Pic�Pp
� � ð7Þ

where Pp and Pic refer for the pressure in the case of passive
response and isometric contraction, respectively.

The mean stretch ratios in the circumferential and axial
direction are

λθ ¼
2π ro þ rið Þ
Lo þ Li

; λz ¼
l
L

ð8Þ

where l is distance between markers in the current deformed
state. Thus after processing the experimental pressure–dia-
meter and extension-force data in the cases of the passive
response and response under isometric contraction, it is
possible to obtain active stress vs. principal stretch data.
The analytical forms of the constitute relations σaθ ¼ σaθ λθ ; λzð Þ
and σaz ¼ σaz λθ ; λzð Þ are proposed on the basis of certain
experimental-based characteristics of the active response.
Model parameters are quantified to yield the best-fit predic-
tions of experimental stresses given by Eq. (7) by minimiza-
tion of the objective functions

Ωα ¼
XN
n ¼ 1

σaðteorÞα �σaðexpÞα

σaðexpÞα

� �
n

2

; α¼ θ; z ð9Þ

where n¼1,2,…N is the number of the experimental states.
The passive constitutive modeling follows a slightly mod-

ified methodology that has been used for quantification of
strain energy function W from data of inflation-extension
mechanical tests (Bellini et al., 2013). We adopt a four-fiber
model for the passive mechanical properties, where the
strain energy function is sought in the form (Bellini et al.,
2013; Baek et al., 2007):
W¼ c I1�3ð Þ þ
X

k ¼ 1;2;3;4

b1k
2b2k

exp b2k λ2k�1
� �2h i

�1
n o

: ð10Þ

The first term accounts for the isotropic contribution of
elastin (Zhou et al., 2014); c is a material constant, and

I1 ¼ λ2θ þ λ2z þ ðλθλzÞ�2 is the first invariant of the Cauchy–Green

strain tensor. The second term includes the contribution of
four families of collagen fibers. Subscript k denotes a family of
collagen fibers oriented at a mean angle of ɑk with respect to
the longitudinal vessel axis; b1k, and b2k are material con-

stants; and λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2θ sin

2αk þ λ2z cos 2αk

q
is the stretch ratio exp-

erienced by each family of collagen fibers due to deformation.
The material constants c, b1k, b2k are determined by the
minimization of an objective function based on constitutive
representation given by Eq. (4) after setting σaθ ¼ σaz ¼ 0,

Ωp ¼
XN
n ¼ 1

σ̂Tθ n� σ̂Eθ n

σ̂Eθ n

 !2

þ
XN
n ¼ 1

σ̂Tz n� σ̂Ez n

σ̂Ez n

 !2

ð11Þ

where

σ̂Eθ ¼ Pp
ri

ro�ri
þ Pp

ri
ro þ ri

; σ̂Ez ¼
f p

π r2o�r2i
� �

þPp
ri

ro þ ri
; σ̂Tθ ¼ λθ

∂W
∂ λθ

; σ̂Tz ¼ λz
∂W
∂ λz

: ð12Þ

The superscripts E and T refer to the experimentally
recorded and theoretically calculated values.
Results

Morphometric measurements of the porcine primary renal
arteries in the stress-free configuration were obtained via image
analysis (Table 1). Geometric variability among arteries might
be due in part to the different age (7–12 month old) and weight
of the pigs, although animal-specific information was not
available for correlation. Experimental results show that com-
plete SMC relaxation causes an increase in the traction-free
sample length as compared to when the basal tone is preserved,
i.e. Lbt=L � 0:94: The reported values of the in-situ axial stretch
ratio account for this fact, with some variation noted among
arterial samples (Table 1).

Representative pressure–outer diameter and axial force–pres-
sure relationships at three values of the axial stretch for the
cases of fully relaxed andmaximally contracted SMCs are shown
in Fig. 1. These plots illustrate the passive and total (passive and
active) arterial response and the complex effects of deformations
in the circumferential and axial directions. Error bars signify
acceptable repeatability on measurements made on the same



Fig. 1 – Pressure–deformed outer diameter (A–C) and axial force–pressure (D–F) relationships for a representative (sample 3,
Table 1) porcine primary renal artery. The vessel mechanical response was recorded under conditions of maximally
contracted (�) and fully relaxed (◦) smooth muscle cell states, and at three axial stretch ratios (λz) that span the in-situ value.
Error bars represent the standard deviation of three repeat measurements on the same vessel.
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vessel, and suggest that no damage was induced in the course of
mechanical testing. Basic histological analyses were performed
on a subset of vessels to verify that no notable damage was pre-
sent in the vessel wall, and that the endothelium remained
intact throughout mechanical testing. The passive pressure–
outer diameter relationship is typical for muscular arteries, exhi-
biting non-linearity and monotonically increasing stiffness (J-
shaped behavior) due to the relatively small elastin content in
the vascular tissue (Fig. 1A–C) (Wagner and Humphrey, 2011).
The pressure–diameter modulus calculated for in-situ axial
stretch λz ¼ 1:3 increases from EP50 ¼ 104:52721:78 kPa at pres-
sure 50mmHg to EP100 ¼ 223:6975:89 kPa at 100mmHg and
EP200 ¼ 353:14714:57 kPa at 200mmHg. The moduli calcul-
ated at 100mmHg and different stretch ratios are Eλ1:17 ¼
108:8472:95 kPa, Eλ1:30 ¼ 223:6975:89 kPa, and Eλ1:43 ¼ 255:477
6:43 kPa, which also show stiffening that is typically associated
with increased axial stretch (Weizsacker and Kamp, 1990;
Weizsacker and Pinto, 1988). The passive pressure–axial force
relationships (Fig. 1D and E) shows that when axial stretch is at
the in-situ value (λz ¼ 1:30), the force is nearly constant over the
pressure range 60–200mmHg. Themoderate force increase at in-
situ axial stretch is similar to previous data reported for the
porcine renal artery (Avril et al., 2013), and is in general
agreement with experimental findings for rabbit basilar artery,
which also belongs to the muscular vessel class (Wagner and
Humphrey, 2011). The effects of axial stretch on the outer
deformed diameter and axial force are shown in Fig. 2. As
expected under constant pressure, an increase in the axial
stretch causes a moderate shrinkage of the artery but significant
augmentation of the axial force.

Muscle contraction modulates the mechanical response.
When compared at equivalent pressures, the deformed dia-
meter after stimulation of the SMCs (isobaric contraction) is
smaller than the diameter in case of passive response
(Fig. 1A–C). The active behavior remains J-shaped and the
constricted artery exhibits higher stiffness than the relaxed
artery compared at equivalent pressures. The corresponding
pressure–diameter moduli at λz ¼ 1:3 are EP50 ¼ 132:557
4:93 kPa at 50 mmHg, EP100 ¼ 267:73771:88 kPa at 100 mmHg
and EP200 ¼ 406:357120:88 kPa at 200 mmHg. Muscle contrac-
tion also induces a significant increase in the axial force
(Fig. 1D–F).

The total circumferential and axial stresses developed
with or without SMC activation are shown in Fig. 3. The
passive circumferential or axial Cauchy stress significantly
increases when the corresponding circumferential or axial
stretch increases. However, the cross effects of λz on σθ and λθ
on σz are less pronounced, similar to reported results for
other types of arteries (Bersi et al., 2014). When the SMCs are
stimulated to contract, the cross effects between stress and
stretch are enhanced (Fig. 3).

Data for the passive stresses were used for identification
of a constitutive formulation of the mechanical properties of
the arterial tissue when the SMCs are maximally relaxed. The



Fig. 2 – Representative (sample 3, Table 1) deformed outer diameter–axial stretch (A) and axial force–axial stretch (B)
relationships under conditions of maximally contracted (�) and fully relaxed (◦) smooth muscle cell states. Data points
indicate values interpolated from experimental data for P¼100 mmHg, while solid/dashed lines indicate theoretical
predictions. The ℗C and ℗R represent interpolated experimental points corresponding to λz¼λin-situ¼1.3 and P¼100 mmHg
while the smooth muscle cells are maximally contracted or fully relaxed, respectively. R values indicate correlation between
experimentally recorded values and theoretical predictions. Error bars represent the standard deviation of three repeat
measurements on the same vessel.
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material constants of a four-fiber family strain energy func-
tion, Eq. (10), are obtained from the condition of the best fit
between experimental and theoretical mean stresses, (Eq.
(11)), and are given in Table 2. The model predictions for the
passive stresses (continues curves in Fig. 3) are in good
agreement with experimental data (RZ0:93 for the selected
representative vessel).

The active stresses are decoupled from the passive stres-
ses using Eq. (7), and the resultant data are displayed in Fig. 4.
Stimulation of the vascular SMCs causes development of both
circumferential and axial stress that depends on the
stretches in a complex manner. The circumferential active
stress increases almost linearly with increase in circumfer-
ential stretch, and the slope of σθ–λθ relation increases with
axial stretch. The active axial stress manifests a non-
monotonic relationship with axial stretch, and monotonically
increases with circumferential stretch ratio over the range of
experimentally recorded deformations (Fig. 4).

Motivated by the results shown in Fig. 4 and previously
proposed constitutive formulations for the active stresses
(Rachev and Hayashi, 1999; Agianniotis et al., 2012), we
adopted the following analytical expressions:

σaθ ¼ Sθ αθλz�1ð Þλθ 1� λθ max�λθ
λθ max�λθ o

� �2
" #

σaz ¼ Sz αzλθ�1ð Þλz 1� λz max�λz
λz max�λz o

� �2
" #

ð13Þ

Sθ and Sz are activation parameters that that depend on
intensity of stimulation and spatial organization of the SMCs;
λθ max and λz max are the stretches where at fixed λz and λθ
respectively, the active circumferential and axial stresses are
maximal; λθ o and λz o are the stretches below which no active
stresses are developed; αθ and αz are material constants. A
numerical surface fitting algorithm was used to calculate
all model parameters and constants, with results given in
Table 3. The theoretical vessel mechanical response (Fig. 2)
and the active and total stress (Figs. 3–4) calculated form the
identified analytical expressions agree well with experimen-
tal data (RZ0:91).
Discussion

This study focuses on the quantification of the active
mechanical response of the porcine primary renal artery
and constitutive formulation of the mechanical properties
of the arterial tissue from in-vitro biaxial tests on tubular
specimens. We recently quantified the strain energy function
of the porcine primary renal artery using a 3-D approach
(Zhou et al., 2014); in this study we again adopted a four-fiber
family model but introduce a new 2-D approach. The 3-D
approach accounts for a possible non-uniform distribution of
the axial and circumferential stress across the arterial wall,
which is most likely when an artery is considered as a thick-
walled tube. In contrary, the classical 2-D approach considers
the artery as a thin membrane which implies per se a
uniform distribution of the tensile stresses and correspond-
ing strains across the arterial wall (Wagner and Humphrey,
2011; Rachev, 2009). In this case the radial compressive stress
is considered equal to zero across the wall despite the fact
that this is true only at the outer arterial surface. As a result
the passive stress is solely given by the second term in Eq. (4).
The novel methodology for identification of the strain energy
function proposed in the current study considers a uniform
distribution of the circumferential and axial stresses but
keeps the contribution of the mean radial stress (the first
term in Eq. (4)). This is a special case of the 3-D approach,
where validation does not require geometrical restrictions on
the radius–thickness ratio, but rather a complete stress
homogenization caused by the residual strains that exist in
the traction-free configuration of an arterial segment.



Fig. 3 – Representative (sample 3, Table 1) total stress–circumferential stretch (A and B) and total stress-axial stretch (C and D)
relationships under conditions of maximally contracted (�) and fully relaxed (◦) smooth muscle cell states. Data points
indicate experimentally recorded values, while solid/dashed lines indicate theoretical predictions. The ℗C and ℗R represent
interpolated experimental points in the circumferential/axial stress–circumferential stretch planes corresponding to λz¼λin-

situ¼1.3 and P¼100 mmHg while the smooth muscle cells are maximally contracted or fully relaxed, respectively. R values
indicate correlation between experimentally recorded values and theoretical predictions.

Table 2 – Best-fit parameters for the utilized structure-motivated strain energy function for the passive mechanical
response.

Sample b0 [kPa] b11 [kPa] b12 b21 [kPa] b22 b31 [kPa] b32 Alpha [1] Residual

1 0.11 2.63 0.20 7.35 3.31 9.83 4.48 35.10 0.35
2 7.13 2.18 0.20 50.1 0.28 1.39 7.00 68.34 0.78
3 0.11 6.77 0.53 14.0 0.36 2.22 3.15 62.65 0.40
4 0.11 0.20 0.20 1.91 1.03 48.9 2.41 59.51 0.93
5 0.11 11.67 0.68 2.00 1.91 0.12 5.46 15.20 0.35
Average 1.51 4.69 0.36 15.1 1.38 12.5 4.50 48.16 0.56
SD 3.14 4.58 0.23 20.2 1.27 20.7 1.83 22.38 0.27
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Experimental data for the passive arterial response are in
agreement with available information for muscular arteries.
In contrast to elastic vessels, such as the common carotid
artery (Wagner and Humphrey, 2011; Gleason et al., 2004;
Gleason and Humphrey, 2004), the structural stiffness of the
renal artery monotonically increases with pressure. Under
normal physiological load conditions (in-vivo axial stretch
and pressure 100 mmHg) the mean circumferential and axial
stresses are approximately 100�150 kPa (Fonck et al., 2007),
while the mean radial stress is about 6:6 kPa. This means
that accounting for the contribution of the radial stress when
the circumferential or axial stresses are calculated from a
strain energy function has a relatively minor impact (4.5–
6.5%), however there is no reason to neglect this effect.

Constitutive formulation of arterial tissue mechanical
properties requires that deformation measures such as
stretches and strains are defined with respect to the stress-
free sample configuration in absence of muscular tone. Thus
in this study, the axial stretch is calculated with respect to
the length of the traction-free tubular specimen when SMC
contractility is abolished. Provided an artery manifests biaxial
contractile properties, our approach negates the influence of



Fig. 4 – Representative (sample 3, Table 1) active circumferential stress–circumferential stretch relationships at three levels of
axial stretch (A) and active axial stress–axial stretch (B) relationships at three levels of circumferential stretch. Data points
indicate experimentally recorded values, while solid/dashed lines indicate theoretical predictions. The ℗ represents an
interpolated experimental point in each stress–stretch plane corresponding to λz¼λin-situ¼1.3 and P¼100 mmHg. R values
indicate correlation between experimentally recorded values and theoretical predictions.

Table 3 – Best-fit parameters and resultant correlation with experimental data (R) for the proposed model of the active
stresses.

Sample Sθ [kPa] αθ λθ max λθ 0 R Sz [kPa] αz λz max λz 0 R

1 295 0.95 1.56 0.68 0.99 98.0 2.10 1.27 1.10 0.98
2 295 0.99 1.42 0.97 0.79 175 1.14 1.26 1.08 0.99
3 308 1.04 1.98 1.08 0.92 235 1.15 1.32 1.15 0.99
4 295 0.83 1.61 0.67 0.86 42.8 2.10 1.46 1.33 0.93
5 298 0.83 1.25 1.08 0.76 80.1 1.40 1.34 1.28 0.98
Average 298 0.93 1.56 0.90 0.86 126 1.58 1.33 1.19 0.97
SD 5.72 0.09 0.27 0.21 0.09 77.8 0.49 0.08 0.11 0.02
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basal tone on the traction-free tubular specimen length and
therefore overestimation of the axial stretch.

It seems that the only published experimental results
about the active properties of the renal artery are included
in a paper by Cox, in which the author compares the passive
and active response of six types of canine arteries (Cox, 1978).
Despite a slightly different manner of experimental data
presentation, our results confirm that under physiological
loads the renal artery develops a circumferential active stress
that is higher than the passive stress (Figs. 3 and 4). Our
results show a monotonic, close to linear, increase in active
circumferential stress with circumferential stretch up to
pressures of 200 mmHg, while Cox reported a similar rela-
tionship for pressures only in the physiological range. The
discrepancy might be caused by the inter species difference,
the experimental protocols, and different method for calcula-
tion of the active stress.

The experimental data show that when compared at
equivalent strains (isometric contraction, not shown) or
equivalent pressures (isobaric contraction), the constricted
artery exhibits higher pressure–diameter modulus compared
to the dilated artery. Because of the assumed summation of
the passive and active circumferential stress, an increase in
the pressure–diameter modulus in the case of isometric
contraction is fully expected. In the case of isobaric contrac-
tion however, predicting the effects of contraction on arterial
structural stiffness is not straightforward. Peterson’s modu-
lus depends on the deformed geometry of the artery and on
the incremental circumferential stress–strain modulus that
describes the linearized mechanical behavior of the tissue at
a specific deformed state. Increases in thickness/radius ratio
and/or the incremental modulus lead to higher values for
Peterson’s modulus. SMC contraction constricts the artery
and thus increases the thickness/radius ratio compared to
the dilated vessel. Under equivalent loads, the constricted
artery experiences smaller circumferential strain compared
to the dilated vessel and therefore the “passive” part of the
incremental modulus decreases. On the other hand due to
contraction, the total incremental modulus has in addition an
“active” part. Thus, the contraction-induced increase in
Peterson’s modulus in our study is the net result of geome-
trical and mechanical effects.

One of the mechanisms that regulate the muscular tone is
the shear stress-dependent production of nitric oxide (NO) by
the endothelial cells, which causes SMC relaxation. In the
case of endothelial dysfunction, the reduced production of
NO leads to an increase in muscular tone in concert with
elevated blood pressure (Nava and Luescher, 1999). Results of
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our study show that in the primary renal artery, elevated
pressure and increased muscular tone synergistically
enhance arterial stiffness, which in turn increases the risk
of development and progression of cardiovascular diseases.

We found that stimulation of the SMCs generates not only
circumferential but also axial stress. Because of the lack of
information for the microstructure of the arterial wall, we
proposed two independent phenomenological equations (Eq.
(13)) for the active stresses that agree well with the experi-
mental data. Decoupling the active and passive response
facilities the selection of the analytical form of these equa-
tions because the dependence of active stresses on stretches
is explicitly illustrated (Fig. 4). Following the described
approach we selected a parabolic dependence of the circum-
ferential (axial) active stress on the corresponding circumfer-
ential (axial) stretch. The linear dependence of the active
stress on the other stretch (cross dependence) was found as a
best fit among several functions.

The existence of biaxial active stress might have several
plausible explanations that are not mutually exclusive. The
dependence of active stresses on both the circumferential
and axial stretches implies that SMCs might be oriented in
the circumferential and axial direction, unless the cells
themselves exhibit a biaxial active response. Another option
is that all or at least some of the SMCs are helically-oriented
within the arterial wall, a notion that is supported by
previous histological observations of some arteries (Chen
et al., 2013). Finally an explanation for the biaxial vasoactivity
could be the rearrangement of collagen fibers when the SMCs
are stimulated to contract. This means that in the case of
isometric contraction the collagen is structurally organized in
a different manner compared to the case of maximally
relaxed muscle. Thorough histological investigations based
on comparison between the arterial structures in the case of
isometric contraction and maximally relaxed SMCs could
shed light on this possibility.

The physiological significance of development an axial
active stress is an open question. The following speculations
about the mechanical stability of arteries provide a possible
explanation. A free-body diagram of a portion of an artery
(including the flowing blood) shows that it is subjected to two
axial forces. One force is compressive and is equal to the
product of arterial pressure and luminal area, F1 ¼ Pπr2i , while
the second force is tensile and is the resultant of the axial stress
acting on the area of arterial cross-section F2 ¼ σzπ r2o�r2i

� �
.

Under normotensive conditions the resultant of these forces
is a tensile force and an artery considered as composite beam
(cylindrical tube filled with incompressible fluid) is mechani-
cally stable (Rachev, 2009). Focusing solely on the passive
mechanical response, an increase in arterial pressure leads to
increased luminal area and so both pressure and area collec-
tively lead to an increase in the compressive force F1. The
tensile force F2 remains virtually constant (Fig. 1E, open circles)
and hence the probability that the artery could buckle is higher.
It is well known that an elevation of arterial pressure is
followed by an acute contractile response, termed the Bayliss
effect. Due to arterial constriction the increase in compressive
force F1 is partially abolished, while due to developed active
axial stress the tensile force F2 increases (Fig. 1E, closed circles).
Therefore the acute active response, including generation of the
axial active stress, opposes the destabilizing effect of a short
term increase in the arterial pressure.

Despite the novelty of some experimental findings and the
encouraging predictive power of the proposed constitutive for-
mulation of the biaxial active properties of the renal arteries, we
recognize numerous limitations in our study. Our assessments
were limited to the cases when the SMCs were completely
relaxed or maximally contracted. There is a need of investiga-
tions on the renal artery active response under basal tone and at
different levels of SMC stimulation. The potential for flow-
induced shear stress to modulate SMC contraction via endothe-
lial cell-mediated signaling was not considered. We did not
account for the possible existence of longitudinal residual
strains, which given the predominantly longitudinal orientation
of elastin fibers observed in the renal artery (Kamenskiy et al.,
2014) could be an appropriate refinement of the reference state
from which strains are calculated. Moreover, this microstructure
motivates the identification of models that account for the
anisotropy of elastin as proposed in (Rezakhaniha et al., 2011).
Finally, we did not account for the potential variance of in-situ
renal artery dimensions due to respiration-induced movement
of the kidney, which could impact the calculated in-situ pre-
stretches (Hsiao et al., 2009).
Conclusion

Our obtained experimental results provide novel information
on the biaxial active mechanical response of the primary
porcine renal artery. The proposed constitutive model, devel-
oped in the framework of cardiovascular solid mechanics,
provides theoretical active stress–stretch relations that agree
well with experimental data. Our findings extend the current
level of knowledge about arterial mechanics in a critical
region of the circulatory system and demonstrate a robust
experimental/theoretical methodology that can be applied to
other muscular blood vessels. Future studies can advance
beyond our data-motivated phenomenological approach
through the development of bio-chemo-mechanical models
for renal arteries.
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